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TAME Pain data release: using 
audio signals to characterize pain
Tu-Quyen Dao1 ✉, Eike Schneiders2,3, Jennifer Williams3, John Robert Bautista4, 
Tina Seabrooke5, Ganesh Vigneswaran6, Rishik Kolpekwar7, Ritwik Vashistha8  
& Arya Farahi   8,9 ✉

Accurately assessing pain through speech remains a challenge in medical practice, with profound 
implications for patient care and patient health outcomes. The TAME Pain dataset addresses this 
challenge by providing a comprehensive dataset that captures the relationship between induced acute 
pain and speech in adults. Utilizing the Cold Pressor Task (CPT) method to induce pain, we recorded 
over 7,000 utterances from 51 participants, correlating their self-reported pain levels with vocal cues. 
This dataset stands as the largest of its kind to date and includes comprehensive annotations detailing 
background noise, speech errors, and non-speech vocal features, maximizing its utility for in-depth 
audio analysis. Our dataset is designed to support the development of reliable, non-invasive pain 
assessment technologies, particularly in telemedicine and remote healthcare settings. By releasing 
these data, we aim to facilitate interdisciplinary research in psychology, medical science, and AI, 
fostering innovations that can enhance pain management practices and improve patient outcomes 
across diverse clinical environments.

Background & Summary
Pain is often referred to as the “fifth vital sign,” yet it remains the only vital sign assessed primarily through sub-
jective patient reports1. Accurate characterization of pain’s intensity, nature, and location is crucial for diagnostic 
precision and evaluating therapeutic outcomes across various clinical settings2. For instance, distinguishing 
between the characteristics of pain can be essential in differentiating conditions such as myocardial infarction, 
heartburn, or aortic dissection3.

Accurately characterizing pain’s intensity, while challenging4,5, is a fundamental aspect of effective diagnosis 
and treatment in medical practice and is essential for enhancing healthcare outcomes6–8. Despite its impor-
tance, understanding the perception of human pain and its expression through speech and vocal cues remains 
underexplored, particularly within psychology and medical science. Traditional pain assessment methods, 
which heavily rely on self-reported measures, face significant limitations due to the subjective nature of pain 
and the influence of various factors, such as individual pain thresholds, cultural differences, and communication 
abilities9. Additionally, reliance solely on patient self-reporting presents challenges, particularly in situations 
where individuals are unable to communicate their pain effectively. This includes emergency cases involving 
non-verbal patients, individuals with developmental or neurological impairments, infants lacking developed 
communication skills, those who do not speak the same language as the medical professional, or those with 
medical conditions such as learning difficulties, autism, and stroke10–12. These limitations often lead to discrep-
ancies in pain management and patient care outcomes13,14.

Speech production is a physiological process that relies on the coordinated function of neural and mus-
cular systems. Pain, which disrupts normal neural and muscular function, can potentially interfere with the 
transmission of speech signals by affecting the same physiological pathways involved in speech production15. 
Understanding the vocal expressions of pain (including non-linguistic signals) in adults can provide new 
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insights into pain perception and management, especially in remote consultations. This is particularly impor-
tant in telemedicine16,17, which has seen increased adoption due to the COVID-19 pandemic18 but has con-
tinued post-pandemic. The increasing use of video and telephone consultations in healthcare necessitates the 
development of reliable, vocal pain assessment technologies that can be effectively utilized in remote settings. 
By leveraging these technologies to analyze vocal indicators, there is a potential to enhance the accuracy of pain 
assessment, regardless of a patient’s communication abilities, resulting in optimized treatment and improved 
patient outcomes. Thus, the ability to detect pain in conjunction with other physiological measures, such as 
voice, is becoming increasingly important.

The ability to judge pain from vocal and paralinguistic (i.e., verbal utterances that do not include language) 
biomarkers would be a particularly useful low-cost and non-invasive tool for remote communications with 
patients who cannot verbally articulate their pain. Research with healthy subjects in which pain has been exper-
imentally induced suggests that people experiencing intense pain produce more speech than those experiencing 
low pain19. This suggests that vocal utterances may provide a rich dataset to assess pain levels.

Research indicates that vocal features may provide valuable insights into health in general, and pain more 
specifically. For example, vocal biomarkers of mental health conditions20 such as depression21, schizophrenia22, 
and post-traumatic stress disorder23 has been reported. Duey et al.24 prompted 60 patients with spine disease to 
self-report their pain levels and provide speech recordings. Using the features identified in the speech signal, the 
researchers developed a machine learning model that predicted the pain level of the patients (high or low) with a 
0.71 accuracy and a 0.73 F1 score. While this is a promising start, it should be noted that there were delays of up 
to 24 hours between the patient pain ratings and speech recordings. To explore the relationship between speech 
signals and pain in an uninterrupted manner25, our team conducted a pilot experiment which indicated a poten-
tial correlation between non-vocal pain cues and pain. However, the study was limited to 15, predominantly 
female, participants. These studies show promise in the detection of pain in speech through an objective signal, 
but the datasets associated with them are not publicly available, limiting further assessment of the datasets.

The scarcity of reliable, publicly available linguistic, acute pain data complicates the identification of vocal 
pain-associated features and the development of effective pain assessment technologies. This problem is pro-
nounced by the lack of data collected in controlled environments and insufficient detailed annotation2. Previous 
research has investigated objective pain assessment methods, including physiological indicators like heart rate 
variability and skin conductance26. However, these measures can be invasive, inaccurate, or impractical in many 
clinical settings, such as telemedicine27. Behavioral indicators, including facial expressions and crying, have 
also been shown useful, particularly in non-verbal populations like infants28,29. Most data sets created for the 
automation of pain assessment focus on facial expressions, electrodermal activity, electrocardiogram, or electro-
myography to assess pain30–34. Recent studies also explored multimodal approaches, combining audio and video 
data for a more comprehensive analysis of pain expressions35. Although the use of audio data is becoming more 
popular in healthcare, high-quality pain datasets collected in highly controlled environments remain scarce.

Healthcare data in the form of “digital fingerprints”36 are increasingly being used to provide personalized 
care. Our study aims to contribute to this growing body of work by releasing a novel and unique dataset that 
captures the relationship between acute pain and speech and vocal cues in adults37. Utilizing the Cold Pressor 
Task (CPT) with water temperatures ranging from 0°C to 4°C, we created a controlled environment to elicit 
pain responses while recording speech and the participants’ self-reported pain levels. This dataset is designed to 
provide comprehensive insights into the vocal cues of pain. We augment this dataset by annotating every single 
audio file, including every sentence spoken by the participant, with details such as background and foreground 
noise, speech errors, and non-speech vocal features. These annotations enable thorough audio analysis, facilitate 
pain studies, and aid in identifying both speech and non-speech pain cues.

By focusing on the intersection of pain perception and speech, our dataset aims to provide a unique resource 
for developing more accurate and objective pain assessment technologies. These advancements have the poten-
tial to transform pain management practices, ensuring better care for patients across diverse clinical and remote 
settings. In addition, our work highlights the importance of interdisciplinary approaches that combine psy-
chology, medical science, and technology to address the complex challenge of pain assessment. Our dataset is 
expected to spur future research into the development of data-driven pain assessment tools, which could revo-
lutionize how pain is diagnosed and treated in both clinical and remote settings.

Methods
The Cold Pressor Task (CPT) was employed as the method to induce pain under controlled laboratory condi-
tions38. In the CPT, participants submerge their hand into cold water maintained at a temperature of approxi-
mately 0°C to 4°C for a specified duration or until pain tolerance is reached. This method is a common technique 
in pain research due to its ability to induce pain reliably in a controlled and measurable manner while presenting 
a low risk of harm to participants. Other techniques used in pain studies include thermal stimulation39, pressure 
application40, and electrical stimulation41. For this study, CPT was chosen for its robustness, consistency in pain 
induction, and minimal risk to participants. The data collection protocol was approved by the University of 
Texas at Austin’s Institutional Review Board (IRB number: STUDY00004954). In this section, we detail our par-
ticipant selection process, text selection criteria, experimental design, and the procedures used to collect data. 
Additionally, we outline the steps taken for data cleaning and annotation.

Participants.  We recruited 51 participants (26 female, 22 male, and 3 non-binary; 5 Hispanic/Latino, 
27 Asian, 1 Black or African American, 14 White, 4 Two or More Races; average age: 21.33, SD: 4.18). To qualify 
for the study, the participants had to be between 18 and 35 years old, fluent in English, and have health insur-
ance. During the initial screening, we excluded six additional participants who self-reported any of the following 
medical conditions to reduce the risk42 of adverse events during the CPT procedure: high blood pressure, heart or 
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circulation problems, dysthymia, cardiovascular disorders, or a history of Raynaud’s syndrome, fainting, seizures, 
or frostbite. Additionally, those with an open cut, sore, or bone fracture on or near either hand, neurological dis-
orders, diabetes, epilepsy, or pregnancy were not eligible43. After the eligibility screening phase, the next page of 
the screening form asked prospective participants to provide their contact email and demographic information, 
including age, gender, and race/ethnicity. Subsequently, a team member contacted them to schedule an appoint-
ment to participate in the study. All participants were recruited using convenience (email lists and flyers), and 
snowball sampling (word-of-mouth). Participants were given a USD 25 gift card as an incentive.

Prior to data collection, each participant’s blood pressure was taken to minimize risk44. Following our 
approved protocol, participants were only allowed to proceed with the study if their blood pressure did not sur-
pass 130 mmHg systolic and 80 mmHg diastolic readings before data collection. All participants were informed 
about the study aims, procedure, and individual rights, including the right to withdraw from the study or to 
terminate the experiment without prior notice or reasoning. Verbal informed consent was also obtained before 
signing a written consent form for the publication of anonymized data and audio recordings. A copy of the con-
sent form was provided to the participants.

Text Selection.  Participants were asked to read aloud sentences selected from a randomized list of Harvard 
sentences45,46. The Harvard Sentences are a set of phonetically balanced sentences designed to cover a wide 
range of English phonemes, ensuring a representative sampling of the language’s sounds. This phonetically bal-
anced nature makes them particularly suitable for speech experiments, as they provide consistent and compa-
rable data across different speakers and conditions. The full list of sentences used in this study is provided in 
the Supplementary Materials file.

Additionally, we incorporated a pain assessment sentence, “On a scale from 1 to 10, the pain I feel right now 
is —”. This regular pain assessment allowed for continuous monitoring of participants’ pain levels throughout 
the experiment, directly linking each batch of Harvard Sentences with a corresponding self-reported pain level. 
This self-reported pain assessment sentence occurred once for every five Harvard sentences.

Pain Inducement: The Cold Pressor Task.  Experimental Setup.  The lab space, approximately 10 meter2, 
was kept consistent for all participants. A custom device was built following47. The setup included two plastic 
containers placed side by side on a desk to minimize movement around the room (see Fig. 1). Each container had 
a detachable separator reserving the inner side of the container for the participant’s hand, while the outer side 
was reserved for ice (only in cold water conditions) to ensure that participants’ skin would not come into direct 
contact with the ice. The left container, used to induce pain, contained cold water (0-4° C). This pain stimulus, 
known as a CPT, is a commonly used task for inducing discomfort to mild pain48,49. The right container, used as 
a control condition, contained warm water (34-37° C). By supplementing ice cubes and hot water for the two 
containers, water temperatures were maintained consistent for all participants. A digital water thermometer was 
utilized to monitor the temperature (precision  ± 0. 1° C) in each container and ensure that the water temperature 
remained within the temperature intervals. To prevent the buildup of microclimate on participants’ skin due to 
lack of water circulation, we ensured water circulation at 5.8 liters per hour using a water pump in each container. 
Furthermore, water levels remained consistent, at approximately half the container’s capacity, allowing partici-
pants to fully submerge their hands. Apart from the water temperature, the conditions were identical.

Experimental procedure.  Participants were randomly assigned to one of the four groups. Apart from the 
order in which hands, left (L) or right (R), were placed in cold (C) or warm (W) water, the four groups 
were identical. Experimental groups were (1) LC-LW-RC-RW, (2) LW-LC-RW-RC, (3) RC-RW-LC-LW, and 
(4) RW-RC-LW-LC. Participants were asked to keep their hands as still as possible throughout each trial, 
minimizing external disturbances in the audio recording. Prior to data collection, participants’ hand tem-
peratures were taken using an infrared thermometer. This provided a baseline temperature for each hand, 
allowing the experimenter to bring the participants’ hand temperatures back to their personal baseline fol-
lowing the final trial. Next, we equipped the Røde Wireless PRO close-talking lapel mic onto a lanyard to be 
worn by the participant, at a distance of approximately 10 inches from the participants’ chin. This was the 
primary microphone for the recordings. Additionally, we used the Blue Yeti desktop microphone, which was 
placed approximately 20 inches from the speaker, and participants read sentences from the monitor, which 
was placed approximately one meter in front of them. See Fig. 1 for experimental setup.

Fig. 1  Experimental set-up for data collection.
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After attaching the primary microphone, we conducted an audio test to verify that the recording device 
worked as intended. Then, each participant was shown two example sentences. Specifically, from the Harvard 
sentences, “The rainbow is a division of white light into many beautiful colours” and, for the pain assessment, 
“On a scale from 1 to 10, the pain I feel right now is —.” Once participants had confirmed that they understood 
and felt comfortable with the task, we proceeded with the actual data collection.

During the experiment, participants were asked to submerge their left or right hand in cold or warm water. 
The order was dependent on the group. The participants submerged their entire hand in the water, with the palm 
facing upwards, while performing the reading task. To minimize risk to the participants, and in accordance 
with the IRB, participants submerged their hand for a maximum duration of up to three minutes—or until they 
voluntarily withdrew their hand from the water48. Following each instance of cold water exposure, participants 
placed that same hand into warm water to bring their hand up to baseline temperature to minimize discomfort 
and ensure that each trial for all participants always started at their baseline temperature. We then proceeded 
with the next condition.

During data collection, each experimental condition started with one batch of six sentences followed by 
batches of five sentences. Each batch began with a randomized selection of Harvard Sentences, followed by a 
pain assessment sentence, “On a scale from 1 to 10, the pain I feel right now is —.” The order of sentences was 
randomized for each participant and manually advanced by the research team. Participants continued reading 
sentences until they either withdrew their hand from the water or reached a three-minute limit. This procedure 
allowed participants to read at their own pace, leading to variability in the number of sentences read by each 
participant. Each sentence is saved as one utterance. We collected a total of 7,044 utterances from the 51 partici-
pants. The collected audio files are saved as one utterance per .wav file, as 16-bit mono PCM 16 kHz. We release 
the audio of participants’ recorded utterances originating from the primary (Røde) lapel mic.

Pain Annotation.  The pain statements were used to label the utterances by manually extrapolating the 
reported pain level backward for the previous unlabeled utterances, allowing us to label every utterance with the 
subject’s self-reported pain level. If a subject reported a pain level of 0, this was re-labeled as 1 since we used a 
pain scale of 1-10. This adjustment was documented as a revised pain level. If the pain statement was not available 
for a batch of sentences, we copied forward, rather than backward, from the preceding pain rating, if available. If 
a preceding pain rating was unavailable, we copied backward from the following pain rating. For cases with no 
adjacent pain statement for that condition, we removed the utterances that remained unlabeled; this was appli-
cable for five utterances.

Out of 7,044 utterances, five utterances were not labeled with a pain level due to the absence of a pain state-
ment from that participant’s condition task. Notes regarding audio disturbances and labeling technicalities were 
made for these five utterances, but since they don’t have an associated pain rating, we excluded them from all 
figures and tables. Our working dataset contains 7,039 utterances and 311.24 minutes of data (average duration: 
2.65 seconds, SD: 0.57 seconds, minimum: 0.33 seconds, maximum: 5.88 seconds).

We adjusted the revised pain levels in our data set to align with three discriminative tasks: presence or 
absence of pain (“Binary task”), mild, moderate, and severe pain (“Three-Class Task”), and cold/warm condi-
tions (“Condition Task”). For binary pain labels, we labeled 1-3 as No pain and 4-10 as Pain. For the three-class 
problem, we treated 1-3 as Mild, 4-6 as Moderate, and 7-10 as Severe50. For the condition task, the abbreviations 
LW and RW were used to indicate Warm Condition and LC and RC as Cold Condition. Figure 2 shows the num-
ber of audio files for each classification.

Speech Data Pre-processing and Annotations.  All recordings were trimmed using voice activity detec-
tion (VAD) to remove any leading and trailing silence using the Python webrtcvad toolkit (https://github.com/
wiseman/py-webrtcvad/) with the lowest aggressiveness setting. Then, TD listened to all audio files using Sony 
WH-1000XM5 Wireless Noise Canceling Headphones for the manual annotation process. 7,039 utterances were 
manually labeled with a pain level and a revised pain level in the PAIN LEVEL and REVISED PAIN columns 
of the meta_audio.csv. When an audio file demonstrated the presence of an audible audio feature or labeling 
technicality, annotations were added to the NOTES column of the meta_audio.csv. Of 7,044 utterances, 
2,869 utterances contained annotations in the NOTES column. These audio files with annotations in the NOTES 
column were then compiled into seven distinct annotation classes, organized in folder Annotations. These seven 
classes are (1) an external disturbance was present, (2) a speech error and/or disturbance occurred, (3) the audio 

Fig. 2  Left Panel: Distribution of all audio files for the Binary Task. Middle Panel: Distribution of all audio files 
for the Three-Class Task. Right Panel: Distribution of all audio files for the Conditions Task.
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was cut out, (4) an audible breath could be heard, (5) there was no pain rating reported, so we copied from an 
adjacent pain rating, (6) the assigned sentence was not spoken, or (7) there was no pain rating at all.

The categories described below are organized in separate datasets within folder Annotations. The following 
describe how each annotation category was made. These categories were treated as non-mutually exclusive, i.e., 
an utterance can be assigned to multiple categories. 

	 1.	 External_Disturbances.csv: (1,852 utterances) Includes any external noise unrelated to a partici-
pants’ vocalization. The annotations were made by (1) describing the disturbance’s intensity, (2) defining 
the noise type, and (3) describing the location of the disturbance in the audio. (1) The intensity of the dis-
turbance was indicated by an adjective preceding the noise type (e.g., “slight” indicated a low-intensity dis-
turbance, and “loud” indicated a high-intensity disturbance), while no preceding adjective indicated mod-
erate intensity. (2) The noise type was defined by a single word to best phonetically imitate the disturbance 
heard in the audio (e.g., beep, click, creak, shuffling, slap, static, etc.). (3) This was followed by a description 
of the disturbance’s general location in the audio file (e.g., beginning, middle, end). However, a location 
descriptor was omitted for instances where the disturbance was persistent through the audio, replaced by 
noting that the disturbance was “constant” or occurred “throughout”. To distinguish the general source 
of the noise, whether it was related to the participant’s movements (e.g., the movement of water heard 
from the experimental conditions, which was likely caused by the movement of the participant’s hand) or 
unrelated to the participant (e.g., a beeping truck outside). We labeled each row with a “foreground” distur-
bance (likely related to the speaker), a “background” disturbance (likely unrelated to the speaker), or both 
a “foreground and background” disturbance (both “foreground” and “background” annotations were made 
for the same audio file). This distinction was made in accordance to the external disturbances annotations. 
A disturbance was classified as having a “foreground” relation if the annotation noise type consisted of 
an “airy”, “creak”, “scrape”, “shuffle”, “squeak”, “static”, “tap”, or “water” noise. A disturbance was classified 
as having a “background” relation if the annotation noise type consisted of a “background voice”, “beep”, 
“buzz”, “clank”, “clash”, “clatter”, “click”, “crinkle”, “crunch”, “hum”, “knock”, “ring”, “slap”, “tink” or “zip” noise. 
Contains one audio file without a pain rating.

	 2.	 Speech_Errors_and_Disturbances.csv: (495 utterances) Includes speech errors (mispronun-
ciations, reading errors, stutters, and added/deleted words/phrases), indicated by describing the verbal 
mistake and the word/phrase subject to the error. This also includes speech disturbances made by the 
participant (laugh, sniff, throat clearing “um”, “uh”), described by identifying the verbal disturbance and its 
location in the audio. Contains one audio file without a pain rating.

	 3.	 Audio_Cut_Out.csv: (525 utterances) Includes instances where the audio was cut out, which resulted 
in loss of parts of the assigned sentence. The annotation was made by first stating the general location or 
quantity of the audio cut, followed by the phrase/word/letter(s) that was cut out, in parenthesis. Contains 
one audio file without a pain rating.

	 4.	 Audible_Breath.csv: (140 utterances) Includes audible inhales/exhales made by a participant, fol-
lowed by a description of its general location (e.g., beginning, middle, end) in the audio.

	 5.	 No_Pain_Rating_Given_So_Copied.csv: (503 utterances) Includes audio files without a pain 
rating as a result of an audio cut at the end of a pain statement or in the case that a condition task doesn’t 
end on a pain statement. For instances where a pain statement from the same condition was available, we 
extrapolated an adjacent reported pain level forward, instead of backward, for the subsequent utterances 
without a pain rating. For other instances where the first pain rating of a condition was not available (on 6th 
audio file), we copied backward from the adjacent reported pain level (11th audio file) and reported the file 
identification number of the file we copied from.

	 6.	 No Assigned Sentence.csv: (13 utterances) Includes audio files where the assigned sentence was 
not spoken at all (e.g., a participant asks to take their hand out). Any extra dialogue was reported if present.

	 7.	 No_Pain_Rating.csv: (5 utterances) Includes audio files where no pain rating was reported and there 
was nothing from that condition to copy from (only happened for five audio files identified as p61395.
LC).

For all audio recordings, there is a uniform background fan noise. This noise is the loudest for participants 
p15965, p37540, p59520, p60145, p71740, p72315, and p93975 (loudest). The fan noise is not 
included in our annotation.

Action Labels.  Based on the annotations, an action label with a pain rating was assigned to each utterance. This 
label can be found in the ACTION LABEL column in the meta_audio.csv file. This excludes utterances 
classified as “No Pain Rating”. From an integer scale of 0 to 4, this label broadly indicates the quality of an audio 
file, with 0 being the highest quality and 4 being the lowest quality. We define low-quality audio as containing an 
audible feature that is likely to confound processed speech data. If multiple annotations were made for a single 
utterance, the highest action label was assigned to that utterance.

The parameters of each label are defined below. 

	 0.	 (4,658 utterances) Clean audio files free from disturbances or errors. This label includes audio files that fea-
tured: no annotations made in the NOTES column, no external disturbances, no speech errors/disturbanc-
es, minor added/deleted words (”a”, “the”, “this”, “to”, “of ”), audible breaths, “No Pain Rating So Copied” 
annotations, or “Audio Cut Out” annotations featuring ≤1 word audio cuts.

	 1.	 (408 utterances) Includes audio files that featured no external disturbances, speech errors 
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(mispronunciations, reading errors, stutters, all other added/deleted words/phrases), or “Audio Cut Out” 
annotations featuring  > 1 word audio cuts.

	 2.	 (698 utterances) Includes audio files that featured low severity external disturbances (indicated in “Exter-
nal Disturbances” annotations with an adjective “slight”, “faint”, “short”, “low”, or “small”), or “Audio Cut 
Out” annotations that indicate the “majority” of the audio was cut out.

	 3.	 (1,175 utterances) Includes files that featured moderate severity external disturbances (indicated in 
“External Disturbances” annotations with no adjective or if a low severity disturbance was annotated to be 
“throughout” or “constant”), or the word “ouch” was added.

	 4.	 (100 utterances) The lowest audio quality with a high potential to confound with speech data process-
ing, this label includes files with high background contamination (indicated in “External Disturbances” 
annotations with an adjective “loud”, “obvious”, or “distinct”), files residing in the annotation category “No 
Assigned Sentence”, speech disturbances (laughter, sniffs, throat clearing), or if the previous sentence was 
read by mistake.

Table 1 shows that higher action labels were designated for annotated utterances that have a higher poten-
tial to confound or corrupt the speech data, as seen in “External Disturbances” and “No Assigned Sentence.” 
Table 2 shows that the baseline classifiers (“No Pain” in Binary Task, “Mild” in Three-Class Task, and “Warm 
Condition” in Conditions Task) have a higher frequency of lower action labels (0, 1, 2) than their task’s cor-
responding pain-stimulated classifiers (“Pain” in Binary Task, “Moderate” and “Severe” in Three-Class Task, 
and “Cold Condition” in Conditions Task). Moreover, a higher frequency of the highest action label (4) in all 
pain-stimulated classifiers is observed.

Data Records
The TAME Pain data are available on the PhysioNet data platform51. It consists of three files and one folder 
described in the following subsections: (1) audio recordings, (2) audio metadata file, (3) participant data, and 
(4) a folder that includes annotations of audio file data.

Audio Recordings.  mic1_trim_v1.zip contains 51 subfolders, each identified with a participant ID 
(PID) that corresponds to 51 participants. The contents of each subfolder consist of that participant’s audio 
recordings saved in .wav format, after being trimmed using VAD. Each audio file is named according to the PID.
COND.UTTNUM.UTTID.wav format. The identifying labels are described below. 

•	 PID (Participant Identification): Begins with the letter p followed by a randomly generated five-digit number. 
51 unique PIDs are used to deidentify the 51 participants. This label corresponds to the title of each folder.

•	 COND (Condition): Has four unique variables: LC (Left Cold), LW (Left Warm), RC (Right Cold), RW (Right 
Warm). This label corresponds to the different experimental conditions.

•	 UTTNUM (Utterance Number): Utterances are the speech data collected in the audio files, encompassing Har-
vard Sentences or pain statements. Each audio file consists of a single utterance. This label numbers utterances 
of each condition in numerical order, starting at 1 for the first utterance of each condition. The first pain 

Action Label

0 1 2 3 4

External Disturbances 0 0 604 1173 74

Speech Errors+Disturbances 25 294 40 108 27

Audio Cut Out 142 142 134 102 4

Audible Breath 84 7 17 26 6

No Pain Rating Given So Copied 278 65 57 81 22

No Assigned Sentence 0 0 0 0 13

Table 1.  Frequency of utterances for action labels observed in each annotation category with a pain label.

Action Label

0 1 2 3 4

Binary Task
No Pain 2,905 246 388 631 32

Pain 1,753 162 310 544 68

Three-Class Task

Mild 2,905 246 388 631 32

Moderate 1,067 86 190 326 34

Severe 686 76 120 218 34

Conditions Task
Warm Condition 2,585 240 345 558 25

Cold Condition 2,073 168 353 617 75

Table 2.  Frequency of utterances for action labels observed in each classification task.
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statement occurs at the sixth Utterance Number and reoccurs every fifth Utterance Number thereafter (e.g., 
6, 11, 16, 21, etc).

•	 UTTID (Utterance ID): Identifies the assigned sentence of an utterance taken from Harvard Sentences. All 
the sentences used are found in the Supplementary Materials file, and the Utterance ID can be identified by 
the sentence’s corresponding list number in the Appendix. All the pain statements are assigned an Utterance 
ID of ‘99999’ for distinction from non-pain statements.

These files are sorted according to the numerical order of PID first, alphabetical order of COND (i.e., LC, LW, 
RC, RW) next, and numerical order of UTTNUM last.

Audio File and Participant Data.  There are two metadata files, meta_audio.csv and meta_par-
ticipant.csv, that consist of Audio file metadata and participant data, respectively.

Audio metadata (meta_audio.csv). Each row represents a single audio file and is sorted in the same 
order described for the audio recordings. The first four columns, PID, COND, UTTNUM, and UTTID maintain 
the same definitions as above. The other columns are defined below. 

•	 PAIN LEVEL: Raw self-reported pain levels extracted from the audio data.
•	 REVISED PAIN: Self-reported pain levels modified to fit with our scale definition.
•	 DURATION: The length of the audio file in seconds.
•	 ACTION LABEL: A discrete scale, from 0 to 4, that labels the quality of the audio, with 0 being the highest 

quality and 4 being the lowest quality.
•	 NOTES: Manual annotations made by the authors. Multiple annotations for a single file are separated by sem-

icolons. Annotations are made in the order that they occur in the audio.

Participant Data (meta_participant.csv). Each row represents a single participant, sorted in 
numerical order according to PID, present in the first column. The other columns are defined below. 

•	 GENDER: Self-reported gender in the screening survey, which included a multiple-choice question with the 
following options: Man, Woman, Non-Binary, and Prefer to self-describe. While a text box was available for 
those choosing to self-describe, it was not utilized by any respondents. Participants include 26 female, 
22 male, and 3 non-binary.

•	 AGE: Self-reported age from the screening survey (average age: 21.33 years, SD: 4.18 years).
•	 RACE/ETHNICITY: Self-reported race/ethnicity from the screening survey. It was presented as a multi-

ple-choice question with the options including Hispanic/Latino, American Indian or Alaska Native, Asian, 
Black or African American, Native Hawaiian or Other Pacific Islander, White, Two or More Races. Partici-
pants include 5 Hispanic/Latino, 27 Asian, 1 Black or African American, 14 White, and 4 Two or More Races.

•	 FOLDER SIZE: Digital storage size of all audio files for that participant, in megabytes (average: 11.72 MB, 
SD: 2.14 MB).

•	 NUMBER OF FILES: Count of audio files for that participant. (average: 138.12 audio files, SD: 27.62 audio 
files).

•	 TOTAL DURATION: Sum of lengths of all audio files for that participant, in seconds. (average: 365.90 seconds, 
SD: 67.12 seconds).

•	 LC: Abbreviation for “Left Cold”, a “1” indicates that the participant completed the condition (hand was sub-
merged for the maximum duration of three minutes) while a “0” indicates an incomplete condition (withdrew 
the hand from the water before three minutes or did not attempt condition). Includes 37 completed condi-
tions and 14 incomplete conditions.

•	 LW: Abbreviation for “Left Warm”, a “1” indicates that the participant completed the condition (hand was 
submerged for the maximum duration of three minutes) while a “0” indicates an incomplete condition (with-
drew the hand from the water before three minutes or did not attempt condition). Includes 51 completed 
conditions and zero incomplete conditions.

•	 RC: Abbreviation for “Right Cold”, a “1” indicates that the participant completed the condition (hand was 
submerged for the maximum duration of three minutes) while a “0” indicates an incomplete condition (with-
drew the hand from the water before three minutes or did not attempt condition). Includes 42 completed 
conditions and nine incomplete conditions.

•	 RW: Abbreviation for “Right Warm”, a “1” indicates that the participant completed the condition (hand was 
submerged for the maximum duration of three minutes) while a “0” indicates an incomplete condition (with-
drew the hand from the water before three minutes or did not attempt condition). Includes 49 completed 
conditions and two incomplete conditions.

Annotation of File Data.  Folder Annotations consists of seven .csv data files 

	 1.	 External_Disturbances.csv
	 2.	 Speech_Errors_and_Disturbances.csv
	 3.	 Audio_Cut_Out.csv
	 4.	 Audible_Breath.csv
	 5.	 No_Pain_Rating_So_Copied.csv
	 6.	 No_Assigned_Sentence.csv
	 7.	 No_Pain_Rating.csv
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If multiple annotations were made for a single file, then that file is found across multiple categories pertaining 
to each annotation made. All data files contain the columns: PID, COND, UTTNUM, UTTID, PAIN LEVEL, 
REVISED PAIN, and NOTES. An ACTION LABEL column is also present in every data file except in No_
Pain_Rating.csv because it contains files without a pain rating. Only External_Disturbances.
csv contains a NOISE RELATION column to distinguish the broad source of the disturbance relative to the 
speaker.

Technical Validation
The validation process was carried out in two key stages: technical quality and usefulness. This section outlines 
the experiments and analyses conducted to ensure the technical quality and reliability of the TAME Pain dataset.

Technical Quality.  In validating our dataset with the experimental conditions, we observe that this dataset 
contains more audio files for the warm water condition. Similarly observed in the experimental conditions, there 
is a higher frequency of incomplete cold water condition tasks, mostly due to voluntary hand-withdrawals prior to 
the full task duration. Figure 3 compares the conditions of all audio files (left) to the completed experimental con-
ditions of all 51 participants (right). For the right panel of Fig. 3, completed conditions imply that a participant’s 
hand was submerged for the full duration of three minutes. Incomplete conditions, not included in the graph, 
imply a premature hand withdrawal (14 premature LC hand-withdrawals, 8 premature RC hand-withdrawals) or 
an unattempted condition (1 unattempted RC, 2 unattempted RW).

The accuracy and comprehensiveness of the labeling was ensured through a collaborative process. The initial 
set of labels was proposed by JW, the team’s audio processing expert, outlining the key features to be annotated. 
This was followed by a round of discussions among TD, AF, ES, and JW, where the labels were refined, and sam-
ple cases were reviewed to ensure a shared understanding and accuracy of the labeling criteria. TD then carried 
out the primary labeling task, applying the agreed-upon labels across the entire dataset. This was followed by a 
secondary categorization task, suggested by JW and performed by TD, to broadly define the labels. The results 
were subsequently presented to the entire research team for feedback. This collaborative review led to further 
refinements, ensuring that the labels accurately captured the relevant features. Example files for each labeling 
assignment were shared with the team to maintain consistency. To validate the accuracy of the labeling, RK 
independently reviewed a random selection of 100 utterances. No objective inconsistencies were found between 
RK’s and TD’s labels, confirming the reliability of the labeling process.

Although we attempted to create a highly controlled environment by instructing participants to avoid mak-
ing noise and conducting the experiment in a relatively quiet room, external disturbances were inevitable. To 
address this, we developed a labeling system to differentiate data based on audio quality. Table 2 reveals a pattern 
where higher quality audio (action label 0) is more frequent in baseline conditions and lower quality audio is 
more prevalent in pain-stimulated conditions. This observation suggests a potential link between more pro-
nounced disturbances in audio and pain detection. Beyond focusing solely on speech data, considering all audio 
signals-including non-speech elements like co-speech gestures19 that may translate into audio – could enhance 
the practical applications of this dataset. This broader approach can be useful particularly in clinical settings, 
where environmental control is often limited, and understanding the full range of audio signals can contribute 
to more effective pain assessment tools.

Usefulness.  This dataset contains a total of 311.24 minutes of audio data, with individual utterances averag-
ing 2.65 seconds in duration (SD: 0.57 seconds, ranging from 0.33 to 5.88 seconds). Figure 4 illustrates the distri-
bution of utterance durations. Figure 5 shows the average duration and the standard error of the mean for each 
class. The p-values are computed using a paired t-test. It is observed that the only significant difference is found 
between the “Moderate” and “Severe” classifiers of the Three-Class Task (p = 0.011) when α = 0.05.

We demonstrate the utility of our annotations through a stratified analysis of the Binary, Three-Class, and 
Conditions classifications. By comparing the overall patterns of these classifications (Fig. 2) with those observed 
within specific subgroups – such as External Disturbances, Speech Errors+Disturbances, and Audible Breath – 
we observe notable differences in distribution (Fig. 6). The three rightmost graphs in each row of Fig. 6 show a 
higher frequency of audio files associated with pain-stimulated classifications compared to the reference graphs. 
This is particularly evident in the Audible Breath category, which suggests a potential correlation between audi-
ble inhales/exhales and pain detection. Furthermore, this correlation supports past findings that show pain is a 

Fig. 3  Left Panel: Frequency of audio files for the Conditions Task. Right Panel: Frequency of completed 
conditions for all participants.
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known simulator for changes in respiratory pattern52,53. These findings highlight the importance of considering 
non-speech vocal cues in the analysis, as they may provide additional insights into the physiology, detection, 
and assessment of pain.

In Fig. 7, we further stratify the External Disturbances category into Foreground and Background subgroups. 
As expected, the Background Disturbance distributions (middle column) show no statistically significant devi-
ation from the reference graphs (left column), indicating that background noises, which are unrelated to the 
speaker, do not significantly differ between baseline and pain-stimulated conditions. In contrast, the Foreground 
Disturbance distributions (right column) exhibit a notable deviation, with a higher proportion of audio files in 
the pain-stimulated classifiers compared to the reference graphs. This suggests that foreground disturbances, 
which are more likely to be related to the speaker’s actions (e.g., chair squeaks or other movements), may corre-
late with pain expression. These findings imply that speaker-induced noises might be an important non-verbal 
cue in pain detection, highlighting the potential significance of monitoring and analyzing such disturbances in 
pain assessment studies.

These examples demonstrate that the provided labels are not merely tools for tracking data quality; they also 
offer potentially useful insights that can be leveraged to enhance our understanding of pain and to develop more 
accurate pain assessment tools. Further analysis of these labels in various contexts can reveal patterns and corre-
lations that contribute to more sophisticated and effective methods for assessing pain.

Usage Notes
Pain Detection.  Previous studies have demonstrated that audio signals, such as cries in infants, can be used 
to distinguish between pain and discomfort with a high accuracy54–56. These findings suggest potential for detect-
ing pain through adult speech, as cries are an early form of speech and involve similar cognitive and muscu-
lar mechanisms57. Based on this premise, recent studies have begun to explore adult speech in relation to pain 
reports, whether from induced acute pain stimuli58 or diagnosed chronic pain59. However, these studies have 
been limited by the small size of their datasets and the lack of data availability, restricting further research and 
validation.

TAME Pain performed the first pilot of data collection in the UK using the same data collection protocol25,37; 
however, the UK study recruited only 15 participants, mostly female, and the annotation was done by a local 
team at the University of Southampton and is less comprehensive. The results of the UK study suggested that 
there are non-vocal pain cues, which became a key motivation behind conducting the US study. Our data release 
does not include the UK data which is limited for distribution due to UK GDPR laws.

This study addresses the limitations of the UK’s small-scale and private dataset by providing the largest pub-
licly released dataset to date that links adult speech with self-reported pain levels. Table 3 provides a comparative 
overview of our dataset alongside other relevant datasets in this domain25,58,59. TAME Pain is distinctive as the 
only publicly accessible dataset, facilitating further research and development in pain assessment. While there 
are other growing voice datasets, such as the Bridge2AI Voice60, these do not include pain-related informa-
tion. Establishing connections between our dataset and these broader voice datasets could provide a promising 
avenue for future research. Such efforts would enable the exploration of synergies between pain assessment 
and other vocal characteristics, which could potentially advance our understanding of speech-based analysis in 
clinical contexts.

Quality Control Scores.  The quality control scores, represented by the action labels ranging from 0 to 4, 
were designed to categorize the audio files based on their overall quality and the presence of confounding features 
for pain studies. A score of 0 denotes the highest quality, where the audio is virtually free of disturbances, while 
a score of 4 represents the lowest quality, with significant background noise or speech disturbances that could 
interfere with data processing. These labels help ensure that researchers can filter and select audio files that meet 
the desired quality standards for their specific analyses.

However, researchers should consider adapting the quality thresholds based on the specific requirements of 
their scientific application. Depending on the sensitivity of the analysis to audio quality, different quality cut-offs 
may be more appropriate. For instance, some studies might tolerate minor disturbances (e.g., action labels of 1 or 2) 
without compromising the validity of the results, while others might require the strictest criteria (only using files 
labeled as 0) to avoid any potential confounding factors.

Fig. 4  Histogram of durations for the working dataset of 7,039 audio files.
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Application in Real-world Environment.  Conducting our experiment in a controlled, quiet environ-
ment reduces the influence of external factors that could confound or obscure the pain signal, yielding a robust 
dataset for studying pain biomarkers and indicators. While this controlled setting does not replicate the acoustic 
complexities of real-world conditions, the collected data can be augmented with noise profiles from real-world 
environments or paired with simulated acoustic features to mimic practical scenarios. This flexibility allows the 
dataset to be tailored for diverse applications by introducing noise systematically, all while maintaining the integ-
rity of the original data.

Ethical Considerations.  Although the dataset is intended to help accelerate the development of pain detec-
tion and classification models in decision support tools to aid optimal pain management, we recognize potential 
ethical issues and unintended consequences. For instance, given the relatively small number of participants lead-
ing to a less racial and ethnically diverse dataset, caution should be exercised in interpreting outputs from models 
developed based on our dataset to avoid widening health disparities caused by biased automated systems. We 
also acknowledge the possibility of dataset misuse that could lead to the development of harmful tools. Given the 
open-access availability of the dataset, we request that people adhere to ethical principles of non-maleficence (i.e., 
first, do no harm) and beneficence (i.e., to do good).

To enhance our awareness of such issues, we ensured that our data collection and research activities aligned 
with a Responsible Research and Innovation (RRI) approach61,62 based on the AREA (Anticipate, Reflect, 

Fig. 5  Left Panel: The average utterance duration for each in the binary pain – no pain Task. The No Pain class 
serves as the baseline and the Pain class serves as the pain-stimulated condition. Middle Panel: The average 
utterance duration for the three-class pain. The Mild class serves as the baseline, and the Moderate and Severe 
class serve as the pain-stimulated condition. Right Panel: The average utterance duration for warm/cold 
condition. The error bars are the standard error of the mean. The p-values are computed using a paired t-test, 
compares.

Fig. 6  First (Leftmost) Column: The reference distribution for (from top to bottom) Binary, Three-Class, 
and Conditions classification. Second Column: Distribution of utterances with label External Disturbances. 
Third Column: Distribution of utterances with label Speech Errors+Disturbances. Last (Rightmost) Column: 
Distribution of utterances with label Audible Breath. All categories shows a deviation from the reference 
distribution.
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Engage, Act) framework63. Liz Dowthwaite conducted RRI workshops among the research team to guide our 
ethics application and project objectives. This is in addition to securing ethical approval from the Institutional 
Review Board of the University of Texas at Austin (IRB number: STUDY00004954), have been in compliance 
with guidelines set by each researcher’s institution, and have received a separate ethical approval from the 
University of Southampton, UK (reference ERGO approval 80074.A1).

Limitations.  This data set can be used to extract features for analysis and develop a greater understanding of 
how pain affects speech. However, it should be noted that the data collection room, although enclosed, was not 
a controlled audio environment. Therefore, some files contain audio disruptions unrelated to the speaker, which 
were carefully annotated. Furthermore, the audio files in mic1_trim_v1.zip is a raw data set and was not 
cleaned for disruptions that may confound with feature extraction. We advise removing extreme disturbances, 
indicated with an Action Label equal to 4, prior to utilizing the files for training or analysis.

The provided manual annotations are useful for model training and validation, especially since hand-labeling 
is often expensive and time consuming. However, these annotations pose limitations of being subject to human 
error since they were manually reviewed by a single author, TD. Furthermore, TD was not blinded to the pain 
levels or conditions reported in each audio file during the annotation process. Additionally, while participants 
were required to be fluent in English, factors that might independently influence speech patterns, such as devel-
opmental learning disorders (e.g., dyslexia), language dominance, or linguistic competence, were not explicitly 

Fig. 7  Left Column: The reference distribution for (from top to bottom) Binary, Three-Class, and Conditions 
classification. Middle Column: Distribution of utterances with label background disturbance. Right Column: 
Distribution of utterances with label foreground disturbance. While the foreground disturbance shows 
a deviation from the reference distribution, the background disturbance is consistent with the reference 
distribution.

Speech Prosody58 Duesseldorf59 TAME Pain (UK)25 TAME Pain

# Audio Files 400 844 1,690 7,044

# Participants 27 80 15 51

Total Duration (min.) — ≈180 76.88 311.24

Ave. Audio File Duration (sec.) 0.93 12.8 2.72 2.65

Language English German English English

Data Released No No No Yes

Table 3.  Comparison of datasets exploring the relationship between adult speech and pain. TAME Pain (UK) is 
not included in our data release.
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monitored. While only healthy subjects participated in our study, conditions such as post-stroke states, depres-
sion, or schizophrenia, which could also affect speech, were not formally excluded.

The manual annotations are objective in recognizing a disturbance, but the intensity and single-word 
descriptor of the noise is subjective, and may be open to interpretation. Similarly, speech errors such as misread-
ings are an objective identification, while other speech errors like mispronunciations are subjective and were 
determined errors based on being the minority pronunciation, relative to the dataset.

We have focused on self-reported pain from participants as the ground truth in our dataset. We acknowl-
edge that medical professionals and clinicians may interpret pain signals differently from those reported by the 
participants. We also acknowledge that our use of Harvard sentences read aloud may not align fully with the 
breadth of utterances, vocalisations, and non-verbal cues that a person experiencing pain may exhibit when 
presenting to medical professionals in times of distress.

Data Access.  Users must be registered on the PhysioNet data platform and sign a specified data use agree-
ment before accessing the TAME Pain dataset files.

Code availability
For data processing, we used “webrtcvad” (https://github.com/wiseman/py-webrtcvad) to trim the audio data. 
The following R libraries were used to create the visualizations: dplyr, ggpubr, ggplot2, and tibble. No additional 
custom code was used to process the data, as all annotations were performed manually.
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